```Python import pandas as pd df = pd.DataFrame({   'group': ['A', 'A', 'B', 'B', 'C', 'C'],    'count': [3, 5, 7, 2, 8, 1] }) ``` Group by 'group' columns and identify the max. 'count' value within each group: ```Python max_counts = df.groupby('group')['count'].max() ``` Filter the DataFrame to keep only rows with max count value within each group by identifying any rows that have the max. count for each group: ```Python result = df[df.apply( lambda x: x['count'] == max_counts.loc[x['group']], axis="columns" )] ``` ``` max_counts.loc[x['group']]  ``` finds the max. count for the given group.