# Generative Information Retrieval
- [Autoregressive Search Engines: Generating Substrings as Document Identifiers](NeurIPS-2022-autoregressive-search-engines-generating-substrings-as-document-identifiers-Paper-Conference.pdf)
- [Transformer Memory as a Differentiable Search Index](NeurIPS-2022-transformer-memory-as-a-differentiable-search-index-Paper-Conference.pdf)
- [Scalable and Effective Generative Information Retrieval](2311.09134.pdf)
# Retrieval-Augmented Generation
- [Retrieval-Augmented Generation for Large Language Models: A Survey](2312.10997v3.pdf)
- [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](2005.11401v4.pdf)
- [When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories](2212.10511.pdf)
- [DEMONSTRATE–SEARCH–PREDICT: Composing retrieval and language models for knowledge-intensive NLP](2212.14024.pdf)
## Hallucination Reduction
- [CHAIN-OF-NOTE: ENHANCING ROBUSTNESS IN RETRIEVAL-AUGMENTED LANGUAGE MODELS](2311.09210.pdf)
- [CHAIN-OF-VERIFICATION REDUCES HALLUCINATION IN LARGE LANGUAGE MODELS](2309.11495.pdf)
## Applying RAG to Structured Data
- [TabR: Unlocking the Power of Retrieval-Augmented Tabular Deep Learning](2307.14338.pdf)
## Summarization
- [From Sparse to Dense: GPT-4 Summarization with Chain of Density Prompting](2309.04269.pdf)
- [Bloated Disclosures: Can ChatGPT Help Investors Process Financial Information?](2306.10224.pdf)
# Copilots/Agents
- [Cognitive Architectures for Language Agents](2309.02427.pdf)
- [A Survey on Large Language Model based Autonomous Agents](2308.11432v1.pdf)
# Recommender Systems
- [LLM-Rec: Personalized Recommendation via Prompting Large Language Models](2307.15780.pdf)
- [RecMind: Large Language Model Powered Agent For Recommendation](2308.14296.pdf)
- [Personalized News Recommendation: Methods and Challenges](2106.08934.pdf)
- [Personality-aware Product Recommendation System based on User Interests Mining and Meta-path Discovery](FinalVerion.pdf)
- [A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions](2109.03792.pdf)
# Graph Representation Learning
- [Relational Deep Learning: Graph Representation Learning on Relational Databases](paper.pdf)
- [Knowledge Graph Prompting for Multi-Document Question Answering](2308.11730.pdf)
- [Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases](2303.14617.pdf)
- [Building a trust-based doctor recommendation system on top of multilayer graph database](Building%20a%20trust-based%20doctor%20recommendation%20system%20on%20top%20of%20multilayer%20graph%20database%20-%202020.pdf)
- [UNDERSTANDING GRAPH EMBEDDING METHODS AND THEIR APPLICATIONS](2012.08019.pdf)
# Generative Text Classification
- [Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation](2309.12075.pdf)
# Generative Named Entity Recognition & Disambiguation
- [AUTOREGRESSIVE ENTITY RETRIEVAL](2010.00904.pdf)
- [Highly Parallel Autoregressive Entity Linking with Discriminative Correction](2109.03792.pdf)