An opinionated lexicon of LLM-related concepts.
## Model development
- Pre-training
- Causal vs. masked language modeling
- [Quantization-aware training](https://huggingface.co/blog/optimize-llm)
- [Flash Attention](https://huggingface.co/blog/optimize-llm)
- [Mixture of Experts](https://huggingface.co/blog/moe)
- Fine tuning
- Supervised fine-tuning (SFT)
- Instruction tuning
- Alignment (with human preferences)
- Reinforcement learning from human feedback (RLHF)
- Reinforcement learning from AI feedback (RLAIF, Constitutional AI)
- Hindsight instruction relabeling (HIR)
- Direct preference optimization (DPO)
- Reinforced self-training (ReST)
## Application design
- Agency level during inference
- Semantic search/retrieval (with embeddings or keyword generation)
- Human-in-the-loop (offline) content generation
- Fully automated (online) content generation
- Retrieval-augmented Generation (RAG)
- Chatbots
- Agents & copilots ("AI", [ReAct Prompting](ReAct%20Prompting.md))
- Modality of inputs (audio, image, and/or text)
## Prompt engineering
- Prompting techniques
- Zero-shot prompting
- [Chain-of-Thought](Chain-of-Thought%20Prompting.md)
- Few-shot prompting
- [Plan-and-Solve](Plan-and-Solve%20Prompting.md)
- Linear prompt chaining (e.g., [LangChain](https://python.langchain.com/docs/get_started/introduction))
- Self-Consistency
- Reasoning agents (e.g., [AutoGen](https://microsoft.github.io/autogen/))
- [ReAct](ReAct%20Prompting.md)
- [Probabilitistic] Prompt testing
- Prompt design
- Manual (hard) prompt tuning
- Automatic (hard) prompt *optimization*
- [Automatic Prompt Engineer (APE)](Automatic%20Prompt%20Engineer%20(APE).md)
- [OPRO](OPRO%20-%20Large%20Language%20Models%20as%20Optimizers.md) Prompt Optimizer
- Automatic Prompt Optimization (APO)
- ...
- *Soft* prompt tuning (e.g., Prefix Tuning, [Prompt Tuning](Prompt%20Tuning.md), or [P-Tuning](P-Tuning.md))
- Constrained [token] sampling during content generation ("guidance")
- [Function calling](https://platform.openai.com/docs/guides/function-calling)
- Guardrails for content monitoring, validation & filtering (+ "re-prompting")
## Model engineering
- Adapter learning techniques (incl. IA3, LoRA, LoKr, etc.)
- Model [Distilling Step-by-Step](Distilling%20Step-by-Step.md)
- Post-training model quantization
## Inference optimization
- Quantization
- In-flight batching
- Speculative inference/decoding
- [Mixture of Experts](https://huggingface.co/blog/moe)